Al-Balqa' Applied University

جامعة البلقاء التطبيقية

Program	Engineering
Specialization	Electrical Installations and
	Equipment
Course Number	20304251
Course Title	High Voltage Technology
Credit Hours	3
Theoretical Hours	3
Practical Hours	0

□ Brief Course Description:

This Course focuses on; main concepts of breakdown, types of insulators, breakdown & conduction in insulators, applications of insulating materials, over voltage and lightning arrestors.

□ Course Objectives:

The student should be able to;

- 1. Know the different types of insulators.
- 2. Know the application of insulating materials in the elements of electrical power system.
- 3. Explain the electrical field characteristics.
- 4. Describe internal & external over voltage.
- 5. Describe the breakdown in; gaseous, solid and liquid insulators.
- 6. Know methods of earthing of high voltage apparatus that used electrical power system.

□ Detailed Course Description:

Unit	Unit name	Content	Time
Number			Needed
1.	The insulating materials & their applications	 Insulators, polarization, suscepility of polarization & dielectric constant. Electric field stress and effect of temperature on insulators. Electrical conductivity of insulators. Electrical breakdown of insulators. Applications of insulting materials in ; transformers, rotating machines, circuit breakers, cable & power equipments. 	
2.	Electric Field	 Electric field stresses. Gaseous insulators. Liquid & solid insulators breakdown. Estimation and control of electric stresses in; parallel plats, concentric cylinders & parallel cylinders with equal diameters. Electric field in cominated insulators. Surge voltages; distribution & control. 	

1997	أسست عام
------	----------

	 		
3	Conduction	Ionization processes.	
	and	■ Townsen's equation & Townsend's	
	breakdown	criterion of breakdown.	
	in Gases	Breakdown in electro- negative.	
		■ Streamer theory of breakdown in	
		gases.	
		■ Paschen's law; breakdown in non	
		uniform fields and corona	
		discharges.	
		■ Post breakdown phenomena and	
		applications.	
		 Practical consideration in using gases 	
		for insulating purposes.	
4	Conduction	Pure liquids and commercial liquids.	
	and	 Purification and breakdown tests. 	
	breakdown	■ Conduction and breakdown in pure	
	in liquid	liquids.	
	dielectrics	■ Conduction and breakdown in	
		commercial liquids suspended	
		particle theory; thermal mechanism	
		of breakdown, stressed volume	
		theory.	
		ancory.	
5	Breakdown	■ Variation of breakdown strength	
	in solid	with time.	
	dielectrics	■ Intrinsic, streamer,	
	diciectifes	electromechanical, electrochemical,	
		thermal and chemical breakdown.	
		■ Breakdown due to internal	
		discharges.	
		■ Breakdown of composite insulation.	
		Solid dielectrics; papr, fiber, glass,	
		ceramic, rubber, plastic and mica.	
		columne, raccol, plastic and inica.	

6	Over	■ External overvoltage and lightning		
	voltages	phenomenon.		
	phenomenon	■ Charge formation in clouds.		
	and	Mechanism of lightning storkes.		
	Insulation	■ Parameters and characteristics of		
	coordination	lightning storkes.		
	in Electrical	■ Internal overvoltage.		
	Power	 Origin of switching surges and their 		
	Systems.	characteristics.		
		■ Control of overvoltage due to		
		switching.		
		■ Protection of transmission lines		
		against over voltages.		
		Protection devices; expulsion gabs,		
		tubes & lightning arrestors.		
		■ Principle of insulation coordination		
		of high voltage and extra high		
		voltage power systems.		
		■ Insulation coordination of		
		substations.		
7	Earthing of	■ Definition of earthing, earthing		
	high voltage	resistance, electrical characteristics		
	apparatus	& electrical conductivity of soil.		
		■ Types of earthing; working & safety		

earthing.

tubular, flats, rings.

• Static resistance of simple earthing;

• Working and safety earthing in

power stations & substations.

\Box Evaluation Strategies:

		Percentage	Date
1. Exams			
	First Exam	20%	//
	Second Exam	20%	//
	Assignments	10%	
	Final Exam	50%	//
2. Homework and Projects			
3.Discussions and lecture			
Presentations			

1 I -1	
1. Laboratory	

□ **Textbook**:

Advanced in high voltage Engineering; M.Haddad & D. Warne, 2004.

□ References:

- 1. The lightning Flash; G.V. Cooray, 2003.
- 2. High voltage Engineering & testing; Hugh M.Ryan, 2001.
- 3. High voltage Engineering Fundamentals; E.Kuffel; 2000.